起订:1
发货:1天内
精密陶瓷零件在材料的选择上差异让产品的特性变不一样,应用的行业与产品也不尽相同,目前市场上主要常见的材料的是:氧化铝陶瓷零件,氧化锆陶瓷零件。
工业领域的推荐氧化锆陶瓷零件用途:
推荐在LED封装设备或其他工业领域使用。
检查治具等产品也可能使用。
需要开发多孔陶瓷零件,黑色陶瓷零件,机能型精密陶瓷零件,结构等各类精密陶瓷件产品。
如果不清楚那款材料合适时,请与我们联系。从原料调配到精密机械加工一站式精密陶瓷生产体系。
陶瓷零件材料在抗压方面有非常好的性能,但一些工程师却对陶瓷的抗压性有所误解,认为它们不能用于高压场合,然而仔细研究那些抗压失效的例子能发现,陶瓷材料如:氧化锆陶瓷零件以合理的设在抗压方面有着不俗表现。例如,氧化铝陶瓷零件的抗弯强度是许多塑料的3-5倍,达到316不锈钢抗弯强度的一半。此外,一些氧化锆和氧化铝的合成材料所具有的抗弯曲强度能与淬硬的工具钢相抗衡。
氧化锆陶瓷零件体积密度:
氧化锆陶瓷结构件体积密度与原材料的选择、制瓷工艺有很大的关系。
在国标GB/T5593-1999规定,要求氧化铝陶瓷产品的体积密度在3.60g/cm3以上。实际上,氧化铝陶瓷的成型方法不同,其的密度差异较大,通常热压铸和注浆法成型时,密度为3.60-3.70g/cm3间;等静压成型时,3.70g/cm3;凝胶法成型可达3.73g/cm3
精密陶瓷零件的高精密加工技术在当今工业上越来越被重视,各种不同的精密加工方法被研发和运用。固着磨料研磨技术是在离散磨料研磨基础上发展起来的一种精整加工技术,即继承了传统研磨的优点又运用上了新的研磨技术,在传统研磨上容易出现的研磨效率、浪费、质量不易控制的问题得到了很好的解决,并且克服了传统超精密磨削中对环境以及机床依赖性大的缺点特种陶瓷材料作为一种无机非金属材料,具有诸多金属材料所不具备的性能,如:高强度、高硬度、高弹性模量、耐高温、耐磨损、耐腐蚀、、抗热震。加之目前的陶瓷成型工艺也已成熟,氧化锆陶瓷材料可以根据需要制成各种非标准形状的零件,取代金属零件成为关键零件。
目前陶瓷加工技术的研究可以概括为两方面
A 对现有的陶瓷加工技术进行深入研究,开发的陶瓷加工机床,优化工艺参数,提高加工质量和加工效率,降低生产成本,以扩大其应用范围。
B 开发和推广陶瓷加工新技术。其发展趋势是把两种或几种加工方法复合在一起形成一种新的加工方法。这样不仅可以大大提高加工效率,而且可以提高工程陶瓷件的加工质量。