生活资讯
堆排序算法 、实现堆排序算法
2023-04-04 16:29  浏览:35

堆排序算法的实现

#includestdio.h

#includemalloc.h

#includetime.h

#define LISTSIZE 100

#define MORESIZE 100

#define overflow -1

typedef struct

{

int data;

int fre;

}Cell;

typedef struct {

Cell *elem;

long int length;

unsigned long int count1;

unsigned long int count2;

long int listsize;

}SqList;

SqList L1;

clock_t start,end;

FILE *p,*w;

int main (void)

{

void assign(Cell *a,Cell *b);

int LT(int a,int b);

void HeapSort (SqList H);

void HeapAdjust (SqList H,int s , int m);

void exchange(Cell *a,Cell *b);

//读入

int time=0;

while(time4)

{

switch (time)

{

case 0:

p=fopen("data01.txt","r");

w=fopen("sorted01.txt","w");

break;

case 1:

p=fopen("data02.txt","r");

w=fopen("sorted02.txt","w");

break;

case 2:

p=fopen("data03.txt","r");

w=fopen("sorted03.txt","w");

break;

case 3:

p=fopen("data04.txt","r");

w=fopen("sorted04.txt","w");

break;

}

L1.count1=0;

L1.count2=0;

time++;

L1.elem=(Cell *)malloc((LISTSIZE+1)*sizeof(Cell));

L1.listsize=LISTSIZE;

L1.length=1;

Cell *newbase;

while(!feof(p))

{

if (L1.lengthL1.listsize){

newbase=(Cell *)realloc(L1.elem,(L1.listsize+MORESIZE+1)*sizeof(Cell));

if (!newbase)

return overflow;

L1.elem=newbase;

L1.listsize+=MORESIZE;}

fscanf (p,"%d (%d)n",((L1.elem+L1.length)-data),((L1.elem+L1.length)-fre));

L1.length++;

}

L1.length--;

printf ("listsize=%d length=%dn",L1.listsize,L1.length);

//排序

start=clock();//开始计时

HeapSort(L1); //堆排序

end=clock(); //结束计时

printf ("Time: %lfn",(double)(end-start)/CLOCKS_PER_SEC);//输出时间

for (int i=1;iL1.length+1;++i)

fprintf (w,"%d (%d)n",(L1.elem+i)-data,(L1.elem+i)-fre);

fprintf (w,"比较次数%u,移动次数%un",L1.count1,L1.count2);

printf ("比较次数%u,移动次数%un",L1.count1,L1.count2);

fprintf (w,"Copyright Reserved,Cheng Xuntao,NWPU");

fclose(p);

fclose(w);

}

return 0;

}

int LT(int a,int b)//比较函数

{L1.count1++;br/if (ab){br/br/return 1;}

else return 0;

}

void assign(Cell *a,Cell *b)//赋值函数

{

a-data=b-data;

a-fre=b-fre;

L1.count2++;

}

void exchange(Cell *a,Cell *b)//交换记录

{

int temp;

temp=a-data;

a-data=b-data;

b-data=temp;

temp=a-fre;

a-fre=b-fre;

b-fre=temp;

L1.count2+=3; //+=3

}

void HeapAdjust (SqList H,int s , int m)//调节其成为堆

{

Cell *rc;

rc=(Cell *)malloc(sizeof(Cell));

int j;

assign(rc,H.elem+s); //暂存

for (j=2*s;j=m;j*=2){ //沿值较大的孩子节点向下筛选

if (jm LT((H.elem+j)-data,(H.elem+j+1)-data ))

j++; //j为值较大的记录的下标

if (!LT(rc-data,(H.elem+j)-data))

break; //rc应插入在位置s上

assign((H.elem+s),(H.elem+j));

s=j;

}

assign((H.elem+s),rc); //插入

}//HeapAdjust

void HeapSort (SqList H) //堆排序

{

int i;

for (i=H.length/2;i0;--i) //把L.elem[1...H.length]建成堆

HeapAdjust(H,i,H.length);

for (i=H.length;i1;--i)

{

exchange(H.elem+1,H.elem+i); //将堆顶记录和当前未经排序的子序列L.elem[i...i]中最后一个记录相互交换

HeapAdjust(H,1,i-1); //重新调整其为堆

}

}//HeapSort

程序员开发用到的十大基本算法

算法一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 “基准”(pivot),

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的***部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

1.创建一个堆H[0..n-1]

2.把堆首(***值)和堆尾互换

3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4.重复步骤2,直到堆的尺寸为1

算法三:归并排序

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如***路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:

DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)

广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法

戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的***权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法

动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和***子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法

朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用***似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

堆排序是什么

【概念】堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]]

=

A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,***的值一定在堆顶。

【起源】

1991年的计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert

W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法(

Heap

Sort

)。

【简介】

堆排序利用了大根堆(或小根堆)堆顶记录的关键字***(或最小)这一特征,使得在当前无序区中选取***(或最小)关键字的记录变得简单。

(1)用大根堆排序的基本思想

先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区

再将关键字***的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key

③由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字***的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。

……

直到无序区只有一个元素为止。

(2)大根堆排序算法的基本操作:

①建堆,建堆是不断调整堆的过程,从len/2处开始调整,一直到***个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h2)…+o(hlen/2)

其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。

②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i),right(i),选出三者***(或者最小)者,如果***(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。

③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn)[2]

注意:

①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。

②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止

【特点】

堆排序(HeapSort)是一树形选择排序。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系(参见二叉树的顺序存储结构),在当前无序区中选择关键字***(或最小)的记录

【算法分析】

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

平均性能:O(N*logN)。

其他性能:由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。堆排序是就地排序,辅助空间为O(1)。它是不稳定的排序方法。(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前

和排序后他们的相对位置不发生变化)。

堆排序算法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于实现堆排序算法、堆排序算法的信息别忘了在本站进行查找喔。

发表评论
0评