定积分的运算公式
具体计算公式参照如图:
扩展资料:
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。
积分分类
不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无
定积分
限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;
若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
积分在实际问题中的应用
(一)经济问题
某工厂技术人员告诉他的老板某种产品的总产量关于时间的变化率为R′(t)=50+5t-0.6t2,现在老板想知道4个小时内他的工人到底能生产出多少产品。
如果我们假设这段时间为[1,5],生产的产品总量为R,则总产量R在t时刻的产量,即微元dR=R′(t)dt=(50+5t-0.6t2)dt。因此,在[1,5]内总产量为
(二)压缩机做功问题
在生产生活过程中,压缩机做功问题由于关系到能源节约问题,因此备受大家关注。假设地面上有一个底半径为5 m, 高为20 m的圆柱形水池, 往里灌满了水。
如果要把池中所有的水抽出,则需要压缩机做多少功?此时,由于考虑到池中的水被不间断地抽出,可将抽出的水分割成不同的水层。
同时, 把每层的水被抽出时需要的功定义为功微元。这样,该问题就可通过微元法解决了。
具体操作如下: 将水面看做是原点所在的位置, 竖直向下做x轴。当水平从x处下降了dx时, 我们近似地认为厚度为dx的这层水都下降了x,因而这层水所做的功微元dw≈25πxdx(J)。当水被完全抽出, 池内的水从20 m下降为 0 m。
根据微元法, 压缩机所做的功为W=25πxdx=15708(J) 。
(三)液体静压力问题
在农业生产过程中,为了保证农田的供水,常常需要建造各种储水池。因此,我们需要了解有关静压力问题。
在农田中有一个宽为 4 m, 高为3 m, 且顶部在水下 5 m的闸门, 它垂直于水面放置。此闸门所受的水压力为多少?我们可以考虑将闸门分成若干个平行于水面的小长方体。
此时, 闸门所受的压力可看做是小长方体所受的压力总和。 当小长方体的截面很窄的情况下, 可用其截面沿线上的压强来近似代替各个点处的压强。 任取一小长方体,其压强可表示为1・x=x, 长方体截面的面积为ΔA=4dx, 从而ΔF≈x・4dx,
利用微元法求解定积分,还可以解决很多实际工程问题,关键是要掌握好换“元” 的技巧。这就需要我们解决问题时,要特别注意思想方法。思想方法形式多种多样,如以直代曲、以均匀代不均匀、以不变代变化等。
参考资料:
百度百科-定积分
积分运算法则是什么?
积分运算法则是如果一个函数f可积,那么它乘以一个常数后仍然可积。
积分的运算法则:积分的运算法则,别称积分的性质。积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
积分都满足一些基本的性质,在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
积分的保号性:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
积分的计算公式是什么?
积分运算公式: j0dx=C(2)=ln|x|+C。 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
微分在数学中的定义:由函数B=(A), 得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
基本定义:
积分其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。
也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数。
积分运算法则是什么?
积分四则运算常用法则:
1)∫0dx=c 不定积分的定义
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4) ∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。
积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
通常意义上的积分都满足一些基本的性质。以下积分区域 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。积分的性质有:线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
线性性积分是线性的。如果一个函数f 可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
积分的运算法则
积分的运算法则是:f(x)的原函数,存在微分的反函数,在微积分中,一个函数的不定积分,或原函数,或反导数,是一个导数等于的函数F,即F'=f。
积分发展的动力源自实际应用中的需求,实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。
比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
不定积分
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
积分的四则运算法则是什么?
积分的四则运算法则:积分的运算法则,别称积分的性质。积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
积分保号性:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个I上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
如果黎曼可积的非负函数f在I上的积分等于0,那么除了有限个点以外,f=0。如果勒贝格可积的非负函数f在I上的积分等于0,那么f几乎处处为0。如果F中元素A的测度μ(A)等于0,那么任何可积函数在A上的积分等于0。
积分的运算法则的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于积分的运算法则例题、积分的运算法则的信息别忘了在本站进行查找喔。